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7. Probabilistic approach

7.1 Introduction

The aim of this chapter is to provide a deeper understanding of the principles and fundamentals of
verification.

How, on the basis of the verification formats introduced earlier, can sufficient structural safety be

defined, taking into account the uncertainties associated with the various influencing parameters (Fig.
7.1)?
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Figure 7.1 Uncertainties associated with influencing parameters.

Statistics and probability: Reminder of some basic concepts:

- histogram (Fig. 7.2),

- probability density function PDF (Fig. 7.3a), with its characteristics: the mean value (or 1%
moment) and standard deviation (or 2" moment), as well as its cumulative distribution
function CDF (Fig. 7.3b), with the median value,

- Gauss curve or normal distribution, for which the mean and median values are identical, and is
often expressed in its reduced centered form (Fig. 7.4).
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Figure 7.3b Distribution function. Figure 7.4 Gauss curve (reduced centered).

Normal distribution:

More on the normal distribution, with the definition and corresponding expression for the PDF and
CDF below (Fig. 7.5a). It is useful to also give the values of the PDF and CDF in tabular form (Fig.
7.5b). Note in this table the values underlined in red, which correspond to:
- Mean plus one standard deviation, which correspond approx. to a probability of 16% (or the
inverse, 84% of the data if one-sided, or 70% if two-sided)
- Mean plus 3.7 standard deviation, which correspond approx. to the upper bound of acceptable
annual failure probability for structures, i.e. 1:10* (more precisely 3.72 std dev.)
- Mean plus 4.7 standard deviation, which correspond approx. to the lower bound of acceptable
annual failure probability for structures, i.e. 1:10° (more precisely 4.75 std dev.)
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Figure 7.5a Normal distribution expression and plot of the PDF
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Figure 7.5b Normal distribution table of values of the PDF and CDF



MCS - RESSLAB Emmanuel Denarié¢ — Alain Nussbaumer
Course CIVIL-511 — “Engineering of existing structures” — Master CE 2024 EPFL Lausanne
Extracts CIVIL-237 — “Safety and reliability—Probabilistic approach”, controlled translation =~ ED-AN-MP, Nov. 2024

7.2 Limit state function and reliability index

The basic concepts of statistics and probability can be applied to a probabilistic analysis of
structural safety (Fig. 7.6). They allow the concept of safety to be expressed using (Fig. 7.7):
a limit state function, or failure function, G : G = R - S (resistance R, sollicitation or action
effects S)

and the reliability index 5, which can be determined using the failure probability py.

400
pPf= I fs(x) - Fr(x) dx

r, s, X

Figure 7.6 Probability density of resistance variables R and action effects variables S and determination of
the probability that R is smaller than S.
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Figure 7.7 Probability density of the limit state function G, the resistance R and action
effects S (according to Ernst Basler).

The probability of failure can be expressed as follows:

0
b= [ 166 = o(-p)
Safety with respect to a limit state function G can be represented either by the failure probability psor

4
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by, in a normalized space, the reliability index f.

The reliability index represents the probability of failure, and there is a relationship between the two
values. Figure 7.8 shows the relationship between the reliability index and the probability of failure,
for a linear limit function and base variables following a normal distribution: pr= 1-®(f).
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Figure 7.8 Relationship between reliability index and probability of failure

The important relationships that can be drawn from Figure 7.7 are as follows:

With:
- Gw: mean value of the limit state function
- o¢: standard deviation of the limit state function

In the case where the variables correspond to normal distributions:

o; = /a,%+052

If the basic variables follow normal distributions and are uncorrelated, the reliability index can be
calculated using the following formula (according to Hasofer):

Rm - Sm

Jop +aé

This formulation is known as the “First Order Second Moment (FOSM) method”, which was

introduced in 1974 by Hasofer. For a given limit function, the FOSM analysis can be used to find the
5
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mean value of the limit state function and the reliability index.

The FOSM method quickly becomes fairly complex once the number of variables to be considered
exceeds two, and one variable does not follow a normal distribution. The FOSM method was
subsequently extended and adapted to allow more general probabilistic treatment of variables. These
include the Hasofer-Lind method, the linearization method and numerical calculation using Monte-
Carlo simulation.



MCS - RESSLAB Emmanuel Denarié¢ — Alain Nussbaumer
Course CIVIL-511 — “Engineering of existing structures” — Master CE 2024 EPFL Lausanne
Extracts CIVIL-237 — “Safety and reliability—Probabilistic approach”, controlled translation =~ ED-AN-MP, Nov. 2024

7.3  Verification of structural safety

According to the probabilistic approach, structural safety is verified when the following condition is
satisfied:

p = Btgt (or pr < ptgt)

- p: reliability index

- pr. Probability of ruin

- B target reliability index

- D target probability of failure

The reliability (or probability of failure) of an element (or system) is thus compared with a target or
limit value. This target value expresses a certain minimum reliability of structures that is "expected by
the public" (without taking into account economic optimization) and reflects society's requirements in
terms of structural safety.

The minimum reliability can be determined by studying:
- structural accidents that have occurred (e.g. ruins, collapses, failures)
- the risk associated with the different activities of people (structure users)

In construction standards (design and dimensioning of new structures), a target reliability of 4.7 (or
a probability of failure of 10 per year) is often assumed, for example, when "calibrating"
partial safety factors (see chapters 4.4 and 4.5).

In the field of existing structures, an approach for establishing the target reliability index starts from
the specific hazard situation and includes a risk analysis (risk = probability of occurrence x damage)
using the following approach:

- The risk involved in a hazard situation is established by estimating the amount of damage
likely to result from ruin and the value of use (and, where applicable, the immaterial values) of
the structure.

- Risk categories can be defined and "calibrated" in relation to a study involving an analysis of
structural accidents that have occurred and a comparison with other risks to which the
individual is exposed (Table 7.1).

- The value of the target reliability index can be obtained as a function of the risk category
determined for a specific hazard situation.

Risk category | Target probability (annual) p Target reliability (annual) g
I 10-3 3.1
I 104 3.7
I 10-5 42
v 10-6 4.7

Table 7.1 Target probabilities and reliabilities by risk category

This approach can also be applied to verification of serviceability and fatigue (taking into account the
probability of fatigue damage being detected by targeted monitoring).
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Example:

Consider a simple beam of span L = 6 m in the form of a type IPE section in steel S235, subjected to a
distributed load q (it is assumed that the self-weight of the section is neglected).

The beam is designed using a probabilistic approach with the following assumptions:
- target reliability index Sy = 4.0
- Wy, 1 (moment of resistance of the section): constant value
- L (beam span): constant value
fy: normal distribution, with :
average value: fym = 280 N/mm?
standard deviation:  og = 22.4 N/mm?
- q: normal distribution, with:
average value: qm = 0.9qx = 38.7 kN/m’
standard deviation: 64 =0.2qm =7.74 KN/m’

The limit function is G =R - S > 0 where:

R =My =f, Wyp

LZ
s
8
Wyl can be determined by posing :
Ry — Sm , o . -
= ——— > B, = 4.0 (which correspond at a probability of failure of p; ~ 3-107°
> p p y f

Joi + 0
The resistance is defined by:

Rm S Mpl = fym ) Wy,pl == 280 - Wy,pl
Orp = O-fy ' Wy,pl =224- Wy,pl

The loads are given by:
L2
S = q"é = 174.2 - 10° Nmm
o4
05 =—g— = 34.8-10° Nmm
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Wy, =1'262-10°mm®> - Choice: IPE 400 (W, ., = 1'310-10° mm?)

By integrating these values in:

We find that;

However, the exact reliability index can be determined using the IPE 400 profile.

Ry = fym Wy =367kNm and og = o5, - W, = 29.3 kNm

qmL? oqL?
Sm = 3 = 1742 kNm and o5 = g = 34.8 kNm
Therefore:
8 R, — S, 367 —174.2 B

~ JoZ+oZ V2932 + 3487
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7.4  Interrelationship between probabilistic and deterministic approaches of
structural safety

The equation for the reliability index (for uncorrelated base variables that follow a normal distribution)
can be transformed by separating the terms for R and S:

_Rm_Sm
= o
o5 + a2 B=R 5
- m m
Og
Os Og ORr Op
s (1 ——)=R (1— ——)
" < ﬁsm G m RmUG

- B =Po: target value of the reliability index
- as: influence factor of S (= os/0G)

- or: influence factor of R (= or/0G)

- vs: coefficient of variation of S (= 6s/Sm)
- vr: coefficient of variation of R (= 6r/Rm)

We obtain the following expressions for the examination values:

§* =81+ Boasvs)
R* = R,,,(1 — BoagVg)

This gives the relationship between the examination value according to the probabilistic approach and
the examination value according to the deterministic approach (expressed by a characteristic value and
a partial factor):

X" =yx Xy

With:
- X*: examination value (S* or R*)

- vyx: partial factor (yq: load factor, 1/ym: resistance factor (coefficient))

- Xy characteristic value of a base variable (Qx: characteristic value of a variable load, Ru:
characteristic resistance value)

Hence the partial factor can be determined as follows:
Sm
Yo = 7~ (1 + Boasvs)
k

Ry, Ry
R*  R,(1—Boagvg)

Ym =

Note: This formulation is used to determine partial factors defined in standards. Mean values,
coefficients of variation, coefficients of influence and the value of the target reliability index are the
key parameters for calibrating partial factors and representative values defined in design standards. A
partial factor is therefore a function of the importance of a base variable in a limit function, the target
reliability index and the uncertainty associated with the base variable.

10
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The general expressions for the verification of structural safety, with the results of a probabilistic
approach, are:

- probabilistic analysis: S* < R*
- deterministic approach (standards format): Eq < R4 (in the past: S <Rg)

A probabilistic approach to safety can be applied to verification using the standard's verification
format (Fig. 7.9):

- the average value of a variable,
- aprobabilistic value corresponding to a certain fractile,
- or arepresentative value.

Tf(s).f(R)

Figure 7.9 Application to verification

11
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7.5  Probabilistic modelling of an action

7.5.1. Characteristic value of dynamic wind pressure

Climatic actions are sometimes modelled on the basis of meteorological measurement data and using a
probabilistic analysis. The climatic action is thus associated with a certain probability of occurrence
and a certain return period.

The characteristic value of climate action can then be based on two approaches:
I.  Or on an examination value Qg4 with a probability of not being exceeded pr during fixed
duration of use: Q4 = Q(pr)
II.  Or on a characteristic value Qx corresponding to a certain return period. It gives: Qg4 = Yo Qx

Wind speed values can be assumed to follow a Gumbel-type I distribution law (extreme value I max.)
with the distribution function (Fig. 7.10):

F(x) = g *H

where:
- x: variable (wind speed)
- Mean value:

U=u +§ with y = 0.577216

- Standard deviation:

Extreme Value Type | (Maximum) PDF Eatreme Yalue Type | (Marlmum) CDF
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Figure. 7.10 Gumbel distribution I

Both approaches are illustrated using a numerical example.

The wind pressure acting on a tower to be designed must be determined on the basis of statistical
values from a meteorological measuring station, with the following results relating to maximum and
annual wind speed:

- mean value: p =40 m/s

- standard deviation: 6 = 6 m/s

12
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Approach I:

The dynamic wind pressure qa¢ = q(pr) is determined by considering the probability of non-overtaking
F(xt). The statistical values of wind speed follow a Gumbel I distribution.

The parameters of the distribution function are determined as follows:

Vs T
a=—=——02137s/m
o 6V6
- y_ 0577216 _
U=h=o = 02137 Sl 7m/s

The distribution function is then transformed to obtain Xr:

In (—ln(F(XT)))

a

XT:u_

The wind speed corresponds to a probability of not exceeding, for example F(Xt) = 0.995, therefore:

—5.29582

Xr =377 =—35137

=62.1m/s
And the dynamic wind pressure is determined according to:
1 2
Ar =5 PX7

with p the air density (approx.. 1.2 kg/m?).

The uncertainty in the modelling of the effects of actions is considered by the partial factor
v = 1.10. The examination value of the dynamic wind pressure is thus:

1
qq = Vs qr = 1.10- (E 1.2- 62.12) = 2.54 kN /m?

Finally, the characteristic value qx of the dynamic wind pressure is obtained:

2.54
dx :q—d:ﬁ: 169kN/m2

Yo
Approach II:

The characteristic value qx corresponding to a certain return period is determined by applying
Gumbel's law.

A return period of 50 years can be accepted (i.e. 2 events exceeding the characteristic value during a
period of use of 100 years). This corresponds to a value of distribution function F(Xx) = 0.98.

By applying the same equations (as before with approach I), the characteristic value of the wind speed
13
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Xk is calculated:

X, (F =0.98) =55.5m/s

and the characteristic value qx of the dynamic wind pressure is:

1
Gk =5 125552 = 1.85 kN /m?

Note: With these numerical values, approach II provides a characteristic value for dynamic wind
pressure that is 9.5% higher than with approach 1.

14
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7.5.2 Examination value determined from an empirical distribution

Axle load measurements of road traffic are analyzed to determine the examination value on the basis
of an empirical distribution.

Axle loads do not follow a specific distribution law with sufficient precision (Fig. 7.11).

—f— essieux simples (N = 370°000)
;'? essieux triples —o— essieux doubles (N = 70°000)
8 Qq =100 kN B essieux triples (N = 35'000)
c \
g \ > ,
= . . essieux doubles
£ Qa = 140 kN
essieux simples
;xi-__&__ D Q4= 160 kN
. o
I B ==V SN N S S
® 2 r ¥ 2 ¥ e e~ 22 g 5 §
a', | [ 1 1 1 I 1 I ! 1 1 [ |
(-] o - o~ L3¢ < v (i) ~ [==] (o] o o
— — - — —_ — - — — — o~ o~

charge par essieux [to]

Figure. 7.11: Frequency of measured axle load as a function of axle type and statistical analysis [Ludescher
2004]. (These are traffic load measurements from 5 measuring stations on Swiss motorways for the periods
May to September 2000 and March to July 2001).

The characteristic value can be determined by assuming that the probability of all measured axle load
values remaining below the axle load examination value remains below the target probability for the
leading action:

P(Q<Q")< (D(ﬁ = ﬁtarget ) aQ)

with:
- Prarger: target reliability index (see Chap. 7.3)
- aq: influence factor of Q (a value of ag = 0.8 is often used for leading action)
- ®@: function of the standard normal distribution
Note: leading (in French prédominant), and accompanying (in French concomitant)
With a reliability index Bo = 4.0, we obtain:

P(Q < Q) <®(B =Pho-ag=32)=0.9993
or P(Q>0Q*)6.9-107*

The examination value is then determined directly from the empirical distribution (results of a
measurement campaign) for P = 0.9993.

The precision of the resulting value is obtained by applying the rules for the geometric distribution;
the standard deviation of the probability of exceeding the characteristic value is thus:
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with:
- n: number of measurements exceeding the characteristic value
- n: total number of measurements (of axle loads)

The examination value Qq for this road traffic action is finally obtained by taking into account also
partial factor ys which takes account of uncertainties in modelling the effects of actions (see Chap.
4.5.1), i.e. actions (due to road traffic) that are not explicitly covered by the hazard situation
(measurement results).

Qa=vs" Q"

with:
- vs: model factor (often ys = 1.10)

Table 7.2 shows the Qq determined (with the precision expressed by the standard deviation) for the
measurement results given in Figure 7.11.

Table 7.2 Examination values for road axle loads

Single axles Q*= 145 kN or P(Q > 145 kN) = 7.0-10* + 0.4-10**
(370’424 measurements) — Q4 = vs-Q* =160 KN

Twin axles *~ 125 kN or P(Q > 125 kN) = 5.5-10* + 0.8-10**
(69’453 measurements) — Qa4 =7vs5Q* = 140 kN

Triple axles Q*=90 kN or P(Q >90 kN) = 6.1-10* + 1.3-10**
(34’662 measurements) — Q4 =vs:Q* =100 KN

Note: The values in Table 7.2 concerns the static load. Moreover, a dynamic effect due to vehicle

movement should be taken into account, which is often done by an amplificatory factor ¢; of the static
load.

16
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Application 1 — Test values for various action effects

The examination value of the effect of actions Eq (verification of structural safety) and the service
value of the effects of actions Eq (verification of serviceability) are to be determined for existing
structures and for the following four examination situations:

- Example 1 - Building slab, live load as leading action

Example 2 - Roof of an ice rink, snow or wind as the leading action

Example 3 - Rail bridge, railway loads (normal track) as the leading action
- Example 4 - Impact against a column
Actions should be described using their correct abbreviations (acronyms).
Load factors and reduction coefficients should be described by their abbreviations (acronyms) and

numerical values. Even if described with the index k, the characteristic values of the loads may be
updated values.

Solution

Example 1 — Building slab (existing structure)

Examination situation: live load as leading action (limit state type 2)

1) Verification of structural safety

Examination value of the effect of actions:

Eq = E{YGGko:YGGk1:YQ1Qk1(live load)}

Permanent actions:
- va: load factor for permanent action; limit state type 2, yc = 1.20 (unfavorable effect)
- Gyo: characteristic value of the self-weight of the structure
- Giu: characteristic value of the imposed loads: screed, floor covering

Leading action:
- vor: load factor for leading (variable) action; yg1,act = 1.50
- Qui(live load): characteristic value of the live load in the building (variable leading action)

Accompanying action(s): none
2) Verification of serviceability
a) Service value of the effect of irreversible actions, cases of rare actions (deformation due to the

effects of shrinkage and creep of the reinforced concrete slab — “aptitude au fonctionnement”):
17
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Eser = E{Gko' le, le(live load)}

b) Service value of the effect of reversible actions, cases of frequent actions ((elastic) deflection due to
live load — “aptitude au fonctionnement, comfort”):

Eser = E{Gyo, Gi1,111Qk1 (live load)}
- wyi11: reduction coefficient for the frequent value of variable action 1 (y11 =0.5)
c) Service value of the effect of reversible actions, case of quasi-permanent actions — (“aspect”):
Eser = E{Gpo, Gi1,¥21Qk1 (live load)}
- yo1: reduction coefficient for the quasi-permanent value of variable action 1 (y21 = 0.3)
Note: In general, case b) "Service value of the effect of reversible actions, case of frequent actions" is

relevant to be analyzed by calculation. Cases a) and c) are verified by a survey of the current state of
the slab. In the case of a slab to be built, the three cases a) to ¢) must be analyzed/verified.

Example 2 — Roof of an ice rink at an altitude of 1°’500m (existing structure)

Examination situation 1: snow as the leading action (limit state type 2)

1) Verification of structural safety:

Examination value of the effect of actions:

Eq = E{VG Gro, Y6 Gr1, Vo1 Qi1 (snow), P Qx (wind)}

Permanent actions:
- va: load factor for permanent action; limit state type 2, yc = 1.20 (unfavorable effect)
- Guxo: characteristic value of the self-weight of the structure
- Gi: characteristic value of the imposed loads: roof covering and waterproofing, suspended
elements

Leading action:
- vor: load factor for leading (variable) action; yg1,act = 1.50
- Qui(snow): characteristic value of the snow load (variable leading action)

Accompanying action:
- yoQu(wind): rare value of wind (variable) action
- yo: reduction coefficient for the rare value of a wind (variable) action (yo = 0.6)
- Q(wind): characteristic value of the wind load

2) Verification of serviceability

In general, case b) "Service value of the effect of reversible actions, case of frequent actions" is

18
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relevant to be analyzed and verified by calculation. Cases a) and c) are verified by a survey of the
current state of the slab.

b) Service value of the effect of reversible actions, case of frequent actions ((elastic) deflection due to
snow load => “aptitude au fonctionnement, comfort”):

Eser = E{Gko, Gi1,¥11Qp1 (snOW), P, Q) (Wind)}

- yi1: reduction coefficient for the frequent value of snow load (w11 = 0.83)
- y2Q(wind): quasi-permanent value of the wind load (y2 = 0)

Examination situation 2: wind as the leading action (limit state type 2)

1) Verification of structural safety

Examination value of the effect of actions:

Eq = E{VG Gro, Y6 Gi1, Vo1 Qr1(wind), P Qx (snow)}

Permanent actions:
- va: load factor for permanent action; limit state type 2, yc = 1.20 (unfavorable effect)
- Guxo: characteristic value of the self-weight of the structure
- Gi: characteristic value of the imposed loads: roof covering and waterproofing, suspended
elements

Leading action:
- vor: load factor for leading (variable) action; ygi,act = 1.50
- Qui(wind): characteristic value of the wind load (variable leading action)

Accompanying action:
- yoQu(snow): rare value of snow (variable) action
- yo: reduction coefficient for the rare value of a snow (variable) action (yo = 0.96)
- Qu(snow): characteristic value of the snow load

2) Verification of serviceability
In general, case b) "Service value of the effect of reversible actions, case of frequent actions" is
relevant to be analyzed and verified by calculation. Cases a) and c) are verified by a survey of the

current state of the slab.

b) Service value of the effect of reversible actions, case of frequent actions ((elastic) deflection due to
wind load => “aptitude au fonctionnement, comfort”):

Eser = E{Gko, Gi1, Y11 Q1 (Wind), Y, Qi (snow)}

- yi1: reduction coefficient for the frequent value of wind load (w11 = 0.5)
- y2Qx(snow): quasi-permanent value of the snow load (y2> = 0.33)
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Example 3 — Rail bridge (existing structure)

Examination situation: railway loads (normal track: SBB, BLS, etc.) as the leading action (limit state
type 2)

1) Verification of structural safety:

Examination value of the effect of actions:

E; = E{VG Gro, Y6 Gr1,Y01Qu1(SBB), Y Qx (wind)}

Permanent actions:
- va: load factor for permanent action; limit state type 2, yc = 1.20 (unfavorable effect)
- Gyo: characteristic value of the self-weight of the structure
- Giu: characteristic value of the imposed loads: equipment, rails, sleepers, ballast

Leading action:
- voi: load factor for leading (variable) action; yo1 = 1.45
- Qui(SBB): characteristic value of the railway load (variable leading action)

Accompanying action:
- yoQu(wind): rare value of wind (variable) action
- yo: reduction coefficient for the rare value of a wind (variable) action (yo = 0.8)
- Qu(wind): characteristic value of the wind load

Tableau 11: Coefficients de réduction pour les ponts-rails a voie normale

Actions Yo 2] ¥
Charges verticales

— Modéle de charge 1 1,0 10" 02
— Modeéle de charge 2 1,0 10" 0?2
— Modéle de charge 3 0 1,0 0%
Forces horizontales ¥ 1,0 10" 0
Forces dues au vent

— En général 0,8 0,5 0
— Forces aérodynamiques dues au trafic ferroviaire 1,0 0,5 0
Effets de la température 0,6 0,6 0,5
Actions du terrain de fondation

— Poussée des terres 0,7 [ 47 4 0z
— Pression hydraulique 0,7 0.7 0z

2) Verification of serviceability

In general, case b) "Service value of the effect of reversible actions, case of frequent actions" is
relevant to be analyzed and verified by calculation. Cases a) and c) are verified by a survey of the
current state of the slab.

b) Service value of the effect of reversible actions, case of frequent actions ((elastic) deflection due to
railway load => “aptitude au fonctionnement, comfort”):
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Eger = E{ka le'lpllel(SBB)}

- yi11: reduction coefficient for the frequent value of railway load (y11 = 1.0)

Example 4 — Impact against a column (existing structure)

Examination situation: impact force as the leading action

1) Verification of structural safety

Examination value of the effect of accidental action (impact):

E; = E{Gyo, Gr1,Ag, P21Qx (live load)}

- Guxo: characteristic value of the self-weight of the structure

- Gui: characteristic value of the imposed loads: equipment, screed, floor covering

- Ag: shock force examination value

- y21Qx(live load): quasi-permanent value of live load (variable action) in combination with the
accidental action (y21 = 0.6)

2) Verification of serviceability

Not required
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Application 2 — Probabilistic verification of a bridge structure

The structure of an existing footbridge (simple beam with a span of 29.0m and a moment of inertia of
Iy=0. 07254m4) is to be checked using the probabilistic approach.
Check the structural safety of the mid span section (bending moment) and the cross-section
close to the support (shear force) in compliance with a reliability index o = 4.0 (level of
required security).
- Check the serviceability in relation to the deflection of the simple beam, respecting a reliability
index Po = 3.3.

Note: all the parameters can be modelled with a normal distribution.
Discuss the results.

Actions and characteristics of materials:

Actions Type Average value |Standard deviation

Self-weight of load-bearing structure | gom= 13.0 kKN/m | o= 0.50 kN/m

Imposed loads (cladding, equipment) | gim=1.0kN/m | og1=0.10 kN/m
Live load (pedestrians, cyclists) gm=12.0 kN/m sq= 1.0 kN/m

Resistance of the

X The ultimate bending moment Mrm=4750 kNm| om=250kNm
supporting structure

Ultimate shear force Vrm= 780 kN ov=45kN
Modulus of elasticity Em=50.0 KN/mm?| o= 2.0 kN/mm?

Solution

The simple beam of the footbridge (29.0m span) is checked using the probabilistic approach.

Verification of structural safety: for the section at mid-span (bending moment) and the section close
to the support (shear force) in compliance with a reliability index o = 4.0 (required safety).

The limit function is G = R — S > 0 and the verification:

With:
- For the bending moment at mid-span:

R = Mj
5=M,=0125-- () gsar)
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G Mp., — M
ﬁ:_m: Rm a,m2ﬂ0:4.0

06 JoZig + 0L,

- For the shear force close to the support:

R = VR
s=V,=05-1-() gia)
G v s/
ﬁ:_m: Rum a,m2ﬁ024.0
% V O-IER + 0_13(1
Bending moment at mid-span
R = MR
S = My + Moo = 0125 12-() gi5:) + 0125 12 g Gsmow
Notes:
- Snow load is not considered as an accompanying action, see Exercise 6, table with reduction
coefficients, p.128.
- In principle, the design situation with snow load as the leading action should be analyzed. This

design situation may be decisive if the footbridge is located at a high altitude with a
correspondingly high snow load.

Action effects:

Mean value:

Ma,m =0.125- 12" (go,m + I1m + qm)
Ma,m = 0.125-29%- (13.0 + 1.0 + 12.0) = 2733 kNm

Standard deviation:

Omaq = 0.125 - 12 -\/ago + 0}, + 02

Oya = 0.125 - 292 -\/0.502 +0.12+1.02 =0.125-841-1.122 = 118.0 kNm
Resistance:

Mean value:
Mg = 4750 kNm

Standard deviation:
O-MR = 250.0 kNm

Verification:

_ Mign —Mam _ 4750 —2733 _ 2017 _
Joir + 0k, V2502 +1182 2764
23
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Shear force close to the support
Action effects:

Mean value:
Vam =0.5-1- Z Gm; = 0.5-29-(13.0 + 1.0 + 12.0) = 377 kN

Standard deviation:

Ova = 05-1 JJ;O +02 +02=05-29-1.122 = 163 kN

Resistance:

Mean value:
Vrm = 780.0 kN

Standard deviation:
O-VR = 4’5.0 kN

Verification:

g = Vem = Vam _ 780337 _ 403
Joke + 02, V452 +1632 479

=841>p,=40 - OK

The structural safety (bending moment at mid-span and shear force close to the support) is satisfied.

Verification of the serviceability in relation to the deflection of the gangway, with a reliability index
Bo = 3.3. The serviceability criterion considered is users comfort. Consequently, by applying Table 9
given in the answers to Exercise 6, the deflection wq is due only to variable actions (live load due to
pedestrians and cyclists) and is calculated for the consequences of the effects of the actions reversible
and the load case frequent.

oL _29000_
4= 500 600 _ oomm

The aim is to check that the stiffness of the beam is sufficient in relation to the variable action while
complying with the maximum deflection limit criterion. Therefore:

l 5 [*

= > —- .
Ca =500 =W = 384 EJ

q
Hence, in terms of stiffness and action effects:

EIl

5 =781q

with the probabilistic variables E and q.
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The limit function G = R — S is then:

EI
B

G ~781-¢=0

and the verification:

c (%) —7.81qpm
__m _ m —
g=-"_ > B, =323

o, I 2
¢ \/(l_3 . O'EC) + (7.81 . aq)z

with the moment of inertia of the mid-span section Ip = 0.07254 m*:

Ec -1 50-10° N/mm? - 72,54 - 10° mm*
[ 293 -10° mm3

= 148.7 N/mm

I 2 2 72.54-10°- 2.0 - 103\° , - -
(l—g-aEC> +(781-0,)" = +(7.81-1.0)2 = 1/5.952 + 7.812 = 9.81 N/mm

293-10°

Verification:

1487 -7.81-12.0 5498
N 9.81 981

=560>p,=33 - OK

The criterion for the serviceability is largely met.
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Application 3 — Probabilistic determination of snow load

The roof of an existing ice rink needs to be checked. The skating rink is located in a village at an
altitude of 2°150m in the Alps. The snow load to use during the verification must be determined more
precisely using measurement results.

The snow load on a horizontal surface was measured at the skating rink over a period of 9 years, as
shown in the table below.

With:
- m;: number of measurements less than or equal to the value S; max
- Ti: return period

Simax | Pi=mi/(n+1)| X = -In(-In(p;)) | Ti = 1/(1-pi)
[KN/m?] [-] [-] [years]
1 (2009) 11.5
2 (2006) 11.8
3 (2004) 12.7
4 (2008) 13.0
5(2007) 13.8
6 (2010) 14.0
7 (2011) 14.1
8 (2003) 14.2
9 (2005) 15.0

Ranking

What is the value of the maximum snow load for a return period of 50 years during the future service
life of 100 years, assuming that the maximum snow load values follow a Gumbel distribution?

The distribution function of the Gumbel distribution is:

F(x; ,u,ﬁ) _ e_e(u—x)/ﬁ

The standard Gumbel distribution is obtained for p =0 and § = 1:

—-X

F(x)=e"¢

1. Determine the variable X according to the Gumbel’s law (transformed into a linear scale) and
enter the results in the table.

2. There is a linear relationship between the variable X and the snow load. Determine
(graphically plotting the values on an X — Simax diagram) by linear regression the parameters a
and b of the equation:

Si,max(pw) =a-X+b [kN/mz]
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3. Calculate the snow load for the 50-years return period: Sy max(Tw = 50 years).

Solution

Each season, the value of the maximum snow load is determined for 9 seasons. The n = 9 results of
the maximum snow load per season Simax are reported and classified in the table below, with:

- m;: number of values less than or equal to the S; max

- Ti: return period

For a return period of 50 years, the probability of occurrence is:

1
Pw=1- — pw(T,, = 50 years) = 0.98
w

1. The variable X is obtained by transforming the standard Gumbel distribution (distribution function)
foru=0andB=1:

p(xX)=e*" - X= —In(—In(py))

Note: the variable X is in fact a “translation” of the probability of occurrence on a scale for which the
relationship between probability (X axis) and snow load (Y axis) follows a straight line.

The values of X; are given in the table below for each probability of occurrence p;.

Ranking [S\i{/ﬁz] pi= H[li/] (nt1)|X = ‘h[l_(]'ln(Pi)) Ti [:yéé/l(rlipi)
1 (2009) 11.5 0.1 -0.834 1.11
2 (2006) 11.8 0.2 -0.476 1.25
3 (2004) 12.7 0.3 -0.186 1.43
4 (2008) 13.0 0.4 0.088 1.67
5(2007) 13.8 0.5 0.367 2.00
6 (2010) 14.0 0.6 0.671 2.50
7 (2011) 14.1 0.7 1.030 3.33
8 (2003) 14.2 0.8 1.500 5.00
9 (2005) 15.0 0.9 2.250 10.00
17.1 0.98 3.902 50.00

2. Graphical determination (by linear regression) of the parameters a and b of the linear relationship
between X and S; max, plotting the values on a X — S; max diagram.

a=111 and b= 1275 kN/m?
Simax (o) = 1.11- X + 12.75 [kN /m?]
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s&,m-x A
kM /mt] | Suymax (To=50ams) = 12,4 Nju? -+
13 4=
p ca
16+
LA
1
15+ P
2T oui
A4+ Tl .
. /

v il Zis

v o °
~ Sty S LM-X+12.38 [w/,;,ﬂ
42+ =l
87 ™

o - X=3.902.

} i } } —X=<ln (4.. Pi)

3. The snow load for the 50-years return period Swmax(Tw = 50 years) is for pw(Tw = 50 years) = 0.98:
Swmax = 1.11-3.902 + 12.75 = 17.1 kN /m?

Swmax(Tw = 50 years) is defined as the characteristic value Sk of the snow load (variable action)
corresponding to a probability of occurrence of pw(Tw = 50 years) = 0.98.
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